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ABSTRACT

We derive the dispersion relations and polarization characteristics of the normal modes of radiation in
superstrong magnetic fields, with particular attention to those attributes of importance to the transfer of radi-
ation in the relativistic electron-positron plasmas expected to occur in the magnetospheres of radio pulsars.
We restrict ourselves to the regions where the proper frequency of cyclotron resonance greatly exceeds the
proper frequencies of the radiative normal modes. The normal modes are derived when the plasma has no
momentum dispersion across the magnetic field but has arbitrary momentum dispersion along the field. The
contribution of displacement current to the propagation of these “hydromagnetic™ waves is consistently
included. The distinction between superluminous and subluminous modes is made in the superstrong regime,
where drift motions across the field are negligible, and useful formulae for the Landau damping of the sub-
luminous branch of ordinary mode (the Alfvén wave) are derived. These are used to set observational con-
straints on the geometry of the emission zone in radio pulsars, if the emission mechanism generates radiation
in the form of subluminous waves. A brief discussion is given of the relevance of nonvacuum propagation to
Razin suppression of bunched coherent curvature emission, .

Subject headings: hydromagnetics — polarization — pulsars ~ radiation mechanisms

I. INTRODUCTION

Radio pulsars and X-ray pulsars are assumed to be magnetized neutron stars with superstrong magnetic fields, B, .., = 10'2
gauss. In both cases, the basic evidence supporting this hypothesis comes from the application of theories of electromagnetic torque
applied to the observed pulsation (Ostriker and Gunn 1969; Goldreich and Julian 1969; Pringle and Rees 1972; Baan and Treves
1973; Davidson and Ostriker 1973; Lamb, Pethick, and Pines 1973; Rappaport and Joss 1977; Mason 1977; Ghosh and Lamb -
1979a, b; Arons and Lea 1980; Lamb 1984; Arons, McKee, and Pudritz 1986). In two X-ray pulsars, spectral features have been
qualitatively identified with cyclotron line radiation in magnetic fields exceeding 102 gauss (Triimper et al. 1978 Gruber et al. 1980;
Voges et al. 1982). Detailed interpretations of the spectra and pulse shapes of both classes of ohjects have remained elusive, however,
in part because the physics of radiation generation and transfer in superstrong magnetic fields is relatively undeveloped compared to
what is known about radiation in unmagnetized and weakly magnetized plasmas. In the case of X-ray pulsars, the basic power
source is accretion, and this leads to plasma conditions in which radiation transfer effects play a dominant role in the formation of
the emergent spectrum (e.g., Mészaros 1984, and references therein). In radio pulsars, the power supply is rotation, but this fails to
specify the plasma conditions with anything like the uniqueness of the accretion model. In the most developed magnetospheric
models, the plasma supply occurs in the form of a relativistic, electron-positron plasma streaming away from the magnetic polar
regions and other zones of the magnetosphere (Sturrock 1971; Ruderman and Sutherland 1975; Cheng, Ruderman, and Sutherland
1976; Arons and Scharlemann 1979; Arons 19814, 19834, b, 1984; Lominadze, Machabelli, and Usov 1983), with many suggestions
of possible radiation emission mechanisms which might occur in such plasmas (see Michel 1982 for a summary of most of these).
There have also been suggestions that many of the observed phenomena might be due to transfer effects in such relativistic plasmas
(e.g., Cordes and Hankins 1977; Harding and Tademaru 1979; Arons 1979; Cheng and Ruderman 1979; Melrose and Stoneham
1977; Melrose 1979; Arons 1981b; Onischenko 1981). A quantitative consideration of these requires a detailed knowledge of the
propagation characteristics of the radiation normal modes in such plasmas.

Previous authors have investigated some aspects of propagation in pulsar plasmas. Tsytovitch and Kaplan (1972) derived the
dispersion relation for a one-dimensional plasma with a power-law distribution function in an infinitely strong magnetic field, with
vacuunt polarizability neglected. Melrose and Stoneham (1977) included quantum effects and evaluated the dispersion relations in
the “low-density ” limit, appropriate when the departure of the index of refraction from unity is small. Others have addressed
specific mechanisms for the formation of the orthogonal radiation modes observed in pulsar radio emission (e.g., Cheng and
Ruderman 1979; Melrose 1979; Stinebring et al. 1984a, b); we provide a new interpretation of these phenomena in the accompany-
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ing paper (Barnard and Arons 1986, hereafter Paper II). In this papet, we reinvestigate the structure of the linear normal modes in
pulsar plasmas (see Lominadze and Pataraya 1982 for some related work), Our investigation is oriented specifically toward putting
the theory of the normal modes into a form vseful for further studies of radiation transfer in these magnetospheres. Toward this end,
we have incorporated a number of new features, allowing for finite charge and current density, as well as finding a number of useful
expressions for the index of refraction in the strong field [imit and deriving an expression for the Landau damping of subluminous
waves with a component of the wave electric field along the magnetic field. Our primary interest is in the relativistic electron-
positron plasma expected in the radio pulsar environment.

The plan of the paper is as follows. In § IT, we derive the basic dispersion relation, assuming finite but strong magnetic field, in the
small Larmaor radius approximation appropriate to the interior regions or pulsar magnetospheres, We also give general expressions
for the polarization states of the waves which show how nonzero charge and current density lead to the normal modes being
elliptically polarized, even in superstrong magnetic fields. We then turn to the specific characteristics of the extraordinary mode
(variously known as the X-mode, the E-mode, and the fast magnetosonic mode), where we show that it decouples from the plasma
as the magnetic field strength becomes sufficiently strong. The detailed characteristics of the ordinary mode are described in § [i],
including its separation into subluminous (Alfvén wave) and superluminous (the fast mode) branches, and separation into high- and
low-density propagation characteristics as a function of propagation direction in a relativistic plasma. In § TV, we calculate the
damping decrement of the Alfvén wave (the subluminous 0-mode), and contrast the results of the theory of hydromagnetic wave
damping derived here with nonzero plasma frequency to previous studies in which the plasma frequency is taken to be infinite but
the perpendicular velocity dispersion is assumed to be substantial. We solve the X-mode dispersion relation with nonzero ratio of
the plasma energy density to the magnetic energy density in § V. Qur results are summarized and their relevance to pulsar
phenomenology outlined qualitatively in § VL '

II. DISPERSION RELATIONS

a) General Theory of the Mobility Tensor for a Uniform Relativistic Plasma in @ Uniform Magnetic Field

We consider the propagation of electromagnetic waves in a plasma which can be ultrarelativistically streaming and can have
ultrarelativistic momentum dispersion. We assume the wavelengths to be small compared to the scale lengths of the plasma and of
the magnetic field in which the plasma is immersed, Let F,{u}) be the locally homogeneous distribution function of species s in the
absence of the waves, normalized to unity. Here u = p/m, ¢ is the spacelike part of the four-velocity of a particle of species s, while p is
the momentum, m, the rest mass, and ¢ the speed of light. We take the Fourier transform of the Vlasov-Maxwell equations,
assuming the fields are slowly switched on from time = -~ oz, This assures us that the fields satisfy causality (Baldwin, Bernstein, and
Weenink 1969), and it yields dispersion relations defined for Im(e) > 0, where Fourier transforms are assumed to be proportional to
exp [i{k - » — wt)]. Solutions for Im{ew) < 0 are obtained by analytic continuation. After inclusion of the vacuum polarization effects
following the work of Kirk (1980), we find the transformed wave equation

{[tk*c* — w¥)dy; — kkye*]a + My, — 02083653 — ¢*k3 RS2 6,366, =10, {1)

where |, j = x, y, z, with the z-axis aligned parallel to the locally homogeneous magnetic field, the x-axis orientated so that the wave
vector & lies in the (x, z)-plane at an angle 6 the Bfield,a =1 — 2b,0 = 75, R = 4b,
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o is the fine structure constant, w,, = eB/m, ¢ is the nonrelativistic cyclotron frequency, 8E(k, w) is the Fourier transform of the

wave electric field, and M, {k, w) = ), M, (k, w) is the mobility tensor of the plasma. For a given electric field component 8k, w),
the mobility tensor is defined by

STk, w) = (i/dme)M ;k, w)SE (K, w) , (3)

where 4J is the current induced in the plasma by the electric field. The summation convention on repeated indices is understood in
expressions such as equation (3).
Standard methods {Baldwin, Bernstein, and Weenink 1969; Barnes and Scargle 1973) yield
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Here y = (1 -+ )2, B = ufy, z, = k, cu, foo5, 0, = g, Bfm,c, and k, k are the magnitudes of the components of & perpendicular
and parallel to B, respectively, with similar interpretation for u, and uy.

We are interested in the wave propagation characteristics of plasmas with Larmor radii small compared to the wavelengths of the
normal modes; in fact, under conditions thought to be typical in pulsar magnetospheres, the particles may be all in their lowest
Landau level, with no Larmor gyration whatsoever, while still having relativistic momentum dispersion along the magnetic field.
This is because the synchrotron loss time for the decay of the perpendicular momentum of an electron (or positron) is ~ 10747
(100/y)(10* 12 ganss/B) sin~2 y 5, where = sin™*(u, /u) is the pitch angle. Since a particle with nonzero gyrational momentum has
pitch angle exceeding (2hw, /mcy?)7, the synchrotron loss time is always less than 3 x 107 '4(y/100) (10** gauss/B)” s, a result
obtained by transforming the cyclotron decay time from the lowest Landau level back into the laboratory from the frame where the
particle’s pitch angle is 90°. This time is always short compared to the transit time at the stellar surface for any velocity. Most
plasma supply models for either radio or X-ray pulsars therefore predict one-dimensional distributions of random momenta, with
all momentum dispersion along B. Pitch angle scattering at large radii may reduce this anisotropy (Benford 1975; Lominadze,
Machabelli, and Usov 1983): for now, we neglect this possibility and consider only the radiative decayed case. Then it is useful to
expand the matrix in equation (5) to lowest significant order in z, which yields
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For a large number of applications to radiation propagation in the inner magnetosphere, the cyclotron frequencies are large
compared to the Doppler shifted wave frequencies. Therefore, we assume [w,, | > y(w — ky cff), and also assume negligible disper-
sion in the perpendicular momenta by writing :

1
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Integration over all u, yields the mobility tensors, whose components are
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is the average streaming speed of the sth component of the plasma along B,

U,=nmc? J duy pffuy) = {pdengmy e’ (17)

is the energy density (including rest energy) of the sth component,

I, = n,n,c .[ duy uy fuy) = ngmeByvds (18)
is the momentum density of the sth component, and

Py =ngmyc? J. duy By Sy = ngm By v, (19
is the parallel pressure in the sth component. The density n, is that measured in the reference frame where the distribution function
has the form (10). For our purposes, this corresponds extremely closely to the frame corotating with the neutron star, since the
macroscopic electric field in the plasmas of interest differs only slightly from the corotation field, and other cross field drifts are
negligible, for plasma motion well inside the light eylinder,

b) Particle Model of the Mobitity Tensor

Tt is informative to use a simple particle model to interpret the physical content of the mobility tensor for these low-frequency
waves. Consider a particle moving with speed cff, along B. The linearized response of each particle’s four-velocity to the wave
electromagnetic field is described by the momentum equation

ddu adu g
—_— =—= (6E B . 2
R +of, o m,c( + f,b x B+ 6B, x bB) {20)

Now compute the perpendicular velocity, for which du, = y,88,. After taking the Fourier transform and vector mulliplying by B,
we find

_SE xb 0B e —ckyp)
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Since we are interested in Doppler-shifted frequencies low compared to the cyclotron frequency, we solve equation (21) for 68,
through first and second order in B™" by substituting the first two terms into the third. This yields
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The first term is recognizable as the E x B drift in a low-frequency electric field. The second is the drift due to the{s, x §B) x B drift,
while the third is the inertial (* polarization ™) drift, due to the Anite inertia of the particle. :

We now use Faraday's law to express 6B in terms of E, with & in the (x — z)-plane; this defines the x-axis. Then
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Here ny = cky/w and n, = ck,/w are the parallel and perpendicular components of the refractive index. For propagation almost
along p, and B, the (v, x 6B) x B drift almost cancels the E x B drift. This greatly reduces the polarization drift since this is now
proportional to the Doppler-shifted [requency times the total Lorentz force drift, which is itself proportional to the Doppler-shifted
frequency.

Now compute the current due to all the particles with velocity cf,. The component perpendicular to the plane of k and B is

g.n.c
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Comparison to equation (3} yields

4ztiqg, i, cow
My, = —Myy = —SB— (1 —ngfy) .
7 4ner® 3 2 p2 9
Mj;, = — T Vet e (1 — 20y By + my Bij) (26)
4mil| eq,n,c
Mz = —Maa, =#§“ﬁu )

for the mobility of the particles with velocity ¢f which contribute to the current in the y-direction. Summation over all speeds
yields the forms found in the formal theory; in particular, M, is seen to be the result of the inertial drift in the plasma, with the
dependence on energy density being the same as in the cold plasma theory, while the contribution of the momentum density and the
parallel pressure comes entirely from the fully electromagnetic, (v, x 68) x B part of the Lorentz force contribution to the inertial
drift. The quantity M,, represents the contribution of Lorentz force times the B drift, modified substantially from the cold plasma
SE x B drift result only when the velocities are relativistic. Since the plasma has no perpendicular momentum dispersion, M,; # 0
only because. of the (v, x dB) x B drift, which creates a current in the y-direction from any 8E,. This contrasts to the coupling
created by the magnetic mirror force when the particles have finite Larmor radii {e.g., Barnes 1966); this coupling is negligible in the
inner magnetospheres of pulsars, at least for electrons and positrons, but may be of significance in the outer magnetosphere where
strong pitch angle scattering may occur (e.g., Benford 1975; Hardee 1979; Lominadze, Machabelli, and Usov 1983). We analyze this
possibility elsewhere. Similar analysis provides the analogous interpretation of M3, M;,,and M, ;.

The parallel mobility (eq. [12]) has two parts. The second term, proportional to B™*, can be derived from a fluid model. In
response to a perturbed velocity év;, the plasma acquires a density disturbance dn,. The advection of this density disturbance creates
a perturbed current g, cff, on, along B. The continuity equation yields

on :
f = (1 = ny B~ ny 8By + ny 86, . (27
5
Inspection of equation (22) reveals a term proportional to 8E;, arising from the magnetic part of the Lorentz force times the B drift.
Upon using this in equation {27) and using the result in the part of the parallel current due to advection of én,, we obtain the second
term in equation (12). Therefore, this part of the paralle]l response comes from perpendicular motion across B, induced by the
(v, x 6B) x B drift, which derives from 6 E | since this component of 8 £ induces a 6B, when k is not along B.

The first part of M5 contains the Landau resonant response of the plasma. This is not derivable from a fluid model, but can be
obtained from the Vlasov equation in which only velocities and momenta parallel to B are retained; the full result for M is found if
the particle drifts across B are kept in the advection term. This is equivalent to the formal theory given above. The physical
interpretation of the resonance is the same as in the nonrelativistic theory; see Dawson (1961), for example, for a derivation of the
resonant energy exchange when the waves are subluminous, i.e,, have phase velocities less than the speed of light.

¢) Dispersion Relations

‘We now sum over species in equations (11315}, to find
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Here U is the total energy density, P, is the total parallel pressure, IT is the total momentum density, y is the charge density, J | is the
density of electric current flowing along B, n and r, are the conmponents of the index of refraction parallel and perpendicular to the
magnetic field, respectively, and w,, is the plasma frequency of the sth component.

It is useful to define

4nlJ 2cI1 By o 2
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and
D:[=DX+”J‘!.‘ (34)

The quantities Dy + n* and D + n7 are recognizable as the low-frequency dielectric function of a magnetized, uniform plasma, here

qua k) AT 4 y . . £ p :
generalized to include relativistic mass, momentum flow along B and momentum dispersion along B, as well as vacuum polariz-
ation. We will also need

1 2

where D, + nj is the longitudinal dielectric function for response paralle! to B and ¥y is the longitudinal susceptibility. From
equations (3) and (32),
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Then the wave equation (1) has a nontrivial solution if and only if the dispersion relation
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The polarization states are obtained from the wave equation (1), We find
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where the x-component of E lies in the (k, B)-plane, and §E; is the component of §E parallel to B.

Expressions (40) and (41) show that in the general case, nonzero charge density and field-aligned current densities in the
magnetosphere cause the normal modes to be elliptically polarized. Differences in the intertia of the species are another mechanism,
hidden within equations (38){41}, which can lead to elliptical polarization. The radiation which eventually emerges into the weakly
magnetized universe exterior to the magnetosphere is known to be elliptically polarized in general (Stinebring et al. 1984a, b),
although some cases ol almost pure linear polarization do exist,

In the most commonly considered models of pulsar magnetospheres, the charge density is almost equal to the corotation value
Hr = —£L, * B/2nc, where , is the angular velocity of the star and J), is usually assumed to be zero (* closed ™ field lines) or to be
the Goldreich-Julian current density, J, = B/Pc. We point out that neither of these assumptions is necessarily true, especially if the
emission and radiative transfer regions are in boundary layers between dense plasma zones and lower density * starvation ™ zones,
or “gaps” (Arons 1981a, b, 1983, b). In such boundary layers, much larger current and charge densities can occur, as well as strong
differential acceleration between the species, all of which may contribute to the strong elliptical polarization observed in the
emerpgent radiation. However, in this and the accompanying paper on refraction of radio waves in the polar zones of pulsars, we do
assume that the charge and field-aligned current densities are on the order of the corotation and Goldreich-Julian values, respec-
tively, primarily to allow us to isolate the effects of high density and propagation almost aligned with the magnetic field on the
refractive characteristics of the magnetosphere and the relation of these effects to the frequency dependence of beaming morphology.
Then all the terms on the right-hand side of equation (38} are O[(Q,/w)*]. Even for waves of frequency as low as 10 MHz and
rotation rates as fast as 2 kHz, the corrections to the dispersion relation obtained by not setting the right-hand side of equation (38)
equal to zero are only ~107% The dispersion relation then factors, representing the propagation of two uncoupled modes, the
extraordinary or X-mode, obtained by setting Dy = 0, and the ordinary or O-mode, obtained by setting Dy = 0. The terminology is
from conventional magnetoionic theory, since these waves are the analog of the magnetoionic modes in the Q T-X approximation,

In these * normal” regions not associated with a boundary layer, the dispersion relation for the X-mode Dy = 0 yields 6E, =0
and 0E = 0 through zeroth order in Q_/w; the X-mode is linearly polarized, with the electric field perpendicular to the (k, B)-plane
and the wave magnetic field in the (k, B)-plane.
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The ordinary mode exhibits a more complex structure. We rewrite equation (37) in a more instructive form by defining the
transverse susceptibility

1 4
ILEF(U—EC?IE|H +m Pyl . (42)

Then the dispersion relation for the ordinary mode is
Dy =1+ 4my, — )l + 4nyy — n3) — (ny nyfa) (K —2b) =0, {43)

with y, defined in equation (36), K in equation (39), b in equation (5), and & = 1 — 2b. In the simple case of perpendicular or parallel
propagation, the dispersion relation factors, When n, = 0, we have n? = 1 + 4ny,, the dispersion relation and polarization for an
Alfvén wave propagating along B. For n =0, we have nl =1+ 4my,, the dispersion relation for-an electromagnetic wave
propagating across B with the wave electric field polarized along B, so that the plasma response is “ ordinary,” as if the magnetic
field were absent. o

For frequencies well below all the plasma frequencies (as well as being well below the cyclotron frequencies of all the species),
|4z, | > | and the O-mode dispersion relation has the approximate form nj = 1 + 4y, , the dispersion relation of the magneto-
hydrodynamic Alfvén wave at all angles of k with respect to B, including the firehose destabilization by parallel pressure. The
polarization of the O-mode in this magnetohydrodynamic limit is linear, with §E perpendicular to B, to lowest order in (ew/ea,)?, and
lying in the plane of k and B, while B is also linearly polarized, lying perpendicular to the plane of & and B. Therefore, to lowest
significant order in (w/mp)l, the Alfvén wave has its Poynting Aux and group velocity along B, even when displacement current
dominates conduction current and the phase and group velocities are almost ¢. The origin of this result is in the low frequency
compared to the plasma frequencies of all the species. Then the plasma is rapidly mobile along B and shorts out SEy, while the
strong magnetization limits the transverse motions to £ x B drifts and polarization drifts. This results in there being a component
of §E along k but none along B, which gives rise to the ducting of wave energy along B.

The O-mode dispersion relation for n, = 0 also incorporates plasma oscillations, since Dg = 0 can be satisfied either by n* =
1 + dmy, orby 1 + 4myy = 0. The properties of these are determined by the details of the distribution function, as discussed below.

d) B = = Approximation

We now restrict our attention to wave propagation under conditions thought to be appropriate to the magnetospheres of radio
pulsars, in regions where the ¢yclotron frequencies are large compared to the wave frequencies. We further specialize to the plasma
conditions found in models of the polar fiux tubes, in which electron-positron pair creation in and above a surface “pap™ or
“starvation zone™ provides a relativistically outflowing, relativistically hot plasma with number density large compared to the
corotation density B/Pce =7 x 10'° (B/10'? gauss)/P em ™3 (Sturrock 1971; Tademaru 1973; Ruderman and Sutherland 1675,
Cheng and Ruderman 1977; Arons and Scharlemann 1979; Arons 19834 and Arons 1986). In the more modern versions of these
models, the distribution of outflowing momenta has zero momentum dispersion in the perpendicular momenta, but is broad band
paraliel to the magnetic field. Typically {Arons 1986}, the pairs have f,(u) nonzerc between a lower cutoff momentum i, = 10-50 and
an upper cutofl ,, = 103-10*. Below the lower cutoff and above the upper cutoff, the particle spectrum declines exponentially.
Between the cutoffs, the spectrum is a power law with a break in the spectral index, with the power law being slightly steeper than
u~1'5 below a break energy typically about several hundred MeV, and very flat between the break energy and the upper cutoff. In
addition, the plasma is penetrated by the very high energy beam accelerated near the surface, as well as having a lower density
.component of trapped particles flowing back from high altitude on some of the field lines. These conditions are typical of most of the
polar flux tube, while at the boundaries, the response of the plasma to the strong electric fields of the neighboring vacuum zones can
lead to very different average conditions. . :

In this paper, we will neglect all of the complications, and consider only the dense, outflowing pair plasma on a typical field line.
We also assume that the electron and positron distribution functions on each field line remain identical at all altitudes. Further-
more, we replace the structure in f{) by simple model distributions. We allow the density and energy density to be free parameters,
constrained only by the general limits found in the pair creation models. When the electric field over the polar cap extracts an
electron beam, the particle number density is expected to be ~ 10*-10% larger than the corotation density, a value which is
appropriate when the angle between the angular velocity and the magnetic moment is acute (Arons 1983b, 1986). This regime may
also be appropriate when the angle between the angular velocity and the magnetic moment is obtuse, if the pairs are created by
“sparks™ formed when the particle emissivity of the surface is completely inhibited, since in this case the local positron beams
created by the discharges have density comparable to the corotation density (Ruderman and Sutherland 1975), as in the electron
beam case, and the voliage drops at the surface are similar. On the other hand, if the surface can emit an ion beam with density
comparable to the corotation density, the resulting positron beam whose gamma-ray emission gives rise to the final pair plasma has
much lower density, while the voltage drop is the same as in the electron beam case (Arons 1983b). Since the pair density is
proportional to the lepton beam density, with the proportionality constant being a function of the voltage drop on each field line
(the same, in ion emitting and electron emitting polar caps), the final pair density in the outflow over a polar cap that can freely emit
heavy ions is expected to be much lower than in the electron emission case, probably only 10°~10* times the corotation density.
Intermediate cases when the ion emission is partially free (Cheng'and Ruderman 1980; Jones 1979, 1982) should lead to interme-
diate results.

In all of these models, the energy density, ¢ times the momentum density, and parallel pressure of the resulting plasma are
approximately equal to the energy density dissipated in the surface acceleration zone, diluted by the divergence of the field lines
along which the plasma flows, or

Umclla Py xJ ADc = [€BY(R,)/2n](Q, R, /cP(R,/r) . (44)

¢
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Here Jy = B/P,{, = 2n/P, the radial scaling assumes the field is dipolar, A® is the voltage drop developed near the surface along B
between the surface and the pair formation front where pair creation shorts out almost alt of E|, and ¢ is the fraction of the
cross-cap, corotation potential drop contained in Ad. Typically, e ranges from ~ 10~ in a strong field, rapidly rotating pulsar such
as the Crab to about unity in an object near to cessation of pair creation, periods typically on the order of a few seconds (Barnard
and Arons 1982, and references therein). Note that 4zU/B* = €(r/R,)?, with R, the light cylinder radius, equal to ¢/Q, . In the
O-mode, the departure of n* from unity due to the polarization drifts, which contribute the terms proportional to B2, are of order e
compared to the order unity effects of the longitudinal response along B, which contribute the terms proportional to wiaw,.
Therefore, we assume B = oo in the O-mode dispersion relation in all the plasma terms. The corrections due to vacuum polarization
are also small compared to the Jongitudinal plasma polarizability, so we set @ = 1. Then the O-mode dispersion relation is

fw? — czkﬁ)(l - % g,) -3 =0, (45)
with N
= d
gy =P j_ F;liij_f;"# + inf, Y%S(ﬁqﬁ)f;(”.ﬁ) . (46)

Here fi, = w/ck =)', yp = (1 = B "7 ugy = Byvy. S(Bg) = 1 if |Re By < 1 and S(f3,) = 0 if |Re f,| = 1. Expression (46) was
obtained by analytically continuing the integral in equation (32) over the whole plane of the complex index of refraction, and is
uniformly valid on the complex r-plane except of a branch cut extending from the branch points By = £ 1. We choose this cut to
extend from i, = +1 lo fi, = ~io along the lines Re f, = 1. The principal value integral is the integral when |Re Byl > 1; for
such superluminous waves, the linear index of relraction is purely real. We are interested only in waves with weak damping or
growth, for which Im (n) < Re {i); this motivates our choice of the branch cut. We neglect contributions from the branch cut itself;
this contributes only to transient response to initial disturbances (Aaron and Currie 1966), which is not of importance here.

If one assumes B = oo in the X-mode dispersion relation Dy = 0, while at the same time vacuum polarizability is neglacted, then
X-mode propagation reduces to propagation in a perfect vacuum. At most altitudes of interest to wave propagation in radio pulsar
magnetospheres, e(r/R;)* » b, with b given by equation (2). Then the effects of vacuum polarization are negligible, and the X-mode

dispersion relation is
S 4z P - :IT 4xUYN
r:'k-(l — % cos” H) + ?,um:k(qqg'1 cos H) — (1 + ;2 )m' =0, 47)

with 0 the angle between &k and B.

1II. PROPERTIES OF THE ORDINARY MODE WHEN B IS INFINITE

We have evaluated equation {46) for an electron-positron plasma with equal number densities of electrons and positrons and
equal momentum distribution functions for two simple distributions: (1) a d-function in momentum, f () = 8{n — up); and (2) for a
“waterbag ™ distribution, f(#,) = constant, uy < 1 < u,,, with f= 0 outside this range. In addition, we have evaluated the disper-
sion relation approximately for arbitrary distribution functions. Since the distribution functions are identical, we have ), g, w?, =
gw;, where w; = 8ze*N/m. The quantity N is the electron or positron density in the corotating [rame, and m is the electron rest
mass.

a) Delta-Function Distribution

When f{1)) = 81t — ug) then g = 1/[y3(1 — o cky/w)*], and equation (46) becomes
o

(w? — c2f€‘|‘|)|:] - y2 (1 — fi, Cki[/w)z

For this distribution, there exists a frame in which the plasma is at rest, in which the density N’ is related to the laboratory density
by N = yo N', so that w, = p*w),. The O-mode dispersion relation in this comoving frame is obtained from equation (48) by setting
By =10:

:l =0, (48)

(@™ — RPN — ww?) ~ 2k =0. {49)
Expressed in terms of ", the angle with respect to the field, and the magnitude of & this is rewritten alternatively as
(ek'f'y* = [1 — (/o) )/[1 - (@), cos 6'/w)?],
with solution :
w'* = {1 + (ek'fwp)® + [(1 + x7)? — 4x* cos? ]/} {(50)

Here x = ck'/w),. Equation (49) is plotted for several values of &, in Figure 1. From Figure 1 the two branches are evident; the fast
(with comoving parallel index of refraction, ny = ckjy/m' < 1) and the Alfvén (with nj > 1}.
The polarization is found from equation (41) with J, = 0 and a = !. Upon using equation (49} to express {w'/wr)? in terms of
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2 3 4

Fig. | —Dispersion relation for a cold electron-positron plasma in the rest frame of the plasma, Each curve is for a constant value of i) fw], labeled adjacent 1o

the curve.

x = ck'/w), and ¢, we find
SE! 2 k) ¢ i

;. 1 22 L] T 12 12 a1 an142 . (51)
6E [ + kiPc? — kije? & (w) + K )" — 4Pt

The slow (Alfvén) branch corresponds to choosing the minus sign, while the fast, superluminous branch is found by choosing the

plus sign. In the limit ¢k’ < e,

' gk
- (Ck. ) sin @ cos # = — 1L L !:l (Alfvén branch) (52a)
5gy |\ @)
(SE‘J_ - ' 1 ((.U’ )2
—A = - L f [ 2
(ck') sin 0 cos &' ey k- (fast branch) - (52b)

he wave electric field appears to the plasma as an aimost static field (w), > "), the rapid mobility of
letely shorts out 6 * B. The strong magnetic field inhibits similar shorting of the perpendicular
currents driven by the wave, here entirely given by the displacement current across B. The mode is simply the Alfvén wave of
magneto hydrodynamics, in the regime when displacement current greatly exceeds conduction current. Because JE = 0, the
Poynting flux is almost along B, not &'. This is the same as in the usual Alfvén wave derived for 418 < U; Alfvén wave ducting of
energy along B depends on 8E) = 0, not on the ® twanging” of field lines. Equation (52b) shows that the wave on the fast branch has

become an oscillation at the plasma frequency polarized along B in the long wavelength limit & < w)/c.

Equation (52a) shows that when t
the plasma along B almost comp
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In the low density, short wavelength regime &' » w,/c,
k' 1y 2
o [1 + 0(9,5) ] (Alfvén branch) (53a)
oF) 14 ry2
: - |:1 + O(EE,) :| {fast branch) (53b)
k" ck

Equation (53a) shows that the short wavelength limit of the Alfvén wave is a plasma oscillation polarized along &' (&' x 6E =~ 0),
while the fast branch of the O-mode has become a vacuum electromagnetic wave which can escape to infinity (£’ - 5E = 0). These
identifications are all supported by the solutions (50).

In Figure 2, the dispersion relation for waves observed in the laboratory frame is plotted (i.e., eq. [5]). Since Figure 1 is related to
Figure 2 by a Lorentz transformation of &’ and e, leaving ' - c*k}} invariant; the branches are still divided into those with phase
velocities above and below the speed of light. An important difference, however, is that if k| is sufficiently small, plasma effects which
are important only near the plasma frequency w), in the comoving frame extend from @ = w,/yp = w /¥ to w = (1 + Bolyow, =
(1 + fio)yiw, in the laboratory frame. For example, this Doppler smearing of the plasma resonance covers four decades in w for
¥ = 100.

b) Waterbag Distribution

Since the plasma streaming along pulsar open field lines is expected to have a broad, relativistic distribution, the cold-plasma
approximation will be inappropriate in certain regimes. To model the behavior of a hot plasma we use a flat or “waterbag”

4 | I | T T | T '
3 ]
— nB -
o B _
= _
3 B -
L . |
1= Y —

O | f ] i | | | | | | | | | |

0 1 2 3 4

ck,/wy,

Fig. 2—Dispersion relation for a cold electron-positron plasma with relativistic flow velocity (7 = 2), with two values of ck, fw, shown.
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L )

0 1 2 3 4
ck,/w,
FiG. 3—Dispersion relution for the waterbag distribution function. Here ,, = 2and y, = L.Two values of ¢k, fw, (0.0 and 0.8) are shown.
distribution such that
1/(u,, — 1) Ug < Ul < Uy
= . 54
Sl {0 otherwise (54
Using equation (54) in equation {46) yields:
1
g = ( ﬁm _ ﬁﬂ ) ] (55)
VB = YBNL = Buity 1= Fomy

The solution to equation (46) using equation (55) is plotted in Figure 3, using, as an example, y,, = 2 and yo = 1; these low values of
7,, and yq are chosen for graphical clarity. The main qualitative difference between the dispersion relations for the two distributions -
is that for the waterbag distribution no wave modes exist with phase velocities between fi, and f,,, whereas [or the cold distribution

{which, in fact, is the limit y,, = Yo— 0) all phase velocities are present.

¢) General Features of the Dispersion Relation

For a general distribution, the superluminous branch of the 0O-mode has a low-frequency cutolT (when the total index of refraction

1 vanishes) at

Wegrorr = <I/Y3>”2wp )

(56)

where the angle brackets denote average over the momentum distribution. Whenk, =0, the two branches of the dispersion relation

cross at
Derens = (1 + B P00, 2 2 Py

57
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As an example, for a power-law distribution, in which f(y) oc y* between y, and y,,, and in which y,, > 79 & 1, the cutoff frequency is
given by .

T s<—1

2 o8+l . _ L

Wit = w;(s — ,) x \Yog ) —l<s<2, B
/73 2<s
and ., for the same distribution is

Yo s<.—2

2 4 4(5 -+ 1) 35— .

frows = W) oy X el ~2<s< —1. {59)
¥ 5> —1

Thus the range of frequencies over which plasma effects are important for the fast mode remains large in a hot plasma:

ol yi s< —2
2 - 171
wcrnss _ 2(?) —9 s 2 1 —(s/2),,1+(s52) _n <5< b (60)
- 1,3 12— = 7 }’D Ym - -
Wentorr < /} > s+2 2 o 9
o §>2

The behavior of the fast mode is modified by finite momentum dispersion only when the distribution function is relatively flat
{—2 < s < 2} Ifs > 2, the dispersion relation behaves like a §-function at y,,,,, and if s < — 2, like a d-function at y,,,.
We may evaluate equation (46) approximately for arbitrary distribution functions and solve for n, by using two asymptotic

limits:
J < I>(I 32 Regime A: [1 —n| > ! (61a)
— WL —n)" 11— B m
o= J‘ Jiduy 7 ! W
= 3—‘:':' ~ ’ ..
(1— fn)) I 1
= By A Regime B: |1 —m | <5 (61b)
=it
Here
o= L7 TR (62)
Inregime A, assuming (1 + n;) = 2, equation (45) has the solutions
1 — iy = B2+ (n}/4 + 427 . (63)
Here .
o= wg’ulol’l’/mz = (1/}’3>[t)3/ﬂ)2 T ) (64)

(!I'DSS/(‘”1 = 4’?;"&’
In regime B |1 — i | < 1/(2p}), and equation (3) yields

and note that a2

-]
ni

D e 65
A = Kyyaljad) (63

1 — ﬂg

The transition between regime A and regime B occurs when equation {63) is set equal to equation (65}, which requires n to satisfy
ny = (1y} 1 = dyta]' (66)

Since equation {45) (together with eq. [61a]) is a quartic equation in ny, for each o there are four values of iy which satisfy
equation {46), two each on the fast and Alfvén branches. However, one solution has ny = —1 + nj/2 (a backward-propagating fast
mode wave in both laboratory and comoving frames), and one solution corresponds to a plasma wave with phase velocity
comparable to the range in comoving particle velocities expected in a realistic distribution function, and so will have a large
imaginary part to the {requency (see § IV). We restrict our attention to the other two solutions which are outward propagating and
have small imaginary w. :

Expanding equations (63), (65), and (66) yields the following asymptotic formula for 1 — n:

Fast mode:
Jni/l + 2o/} 2y et and /27 (67a)
T—ny =~ <ol 4+ ni/d a2 032  and  1/297. (67b)
(/201 + 4yt Yts o and 032 {67c)
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Alfvén mode:

L —nifByta o> Y2y;  and at? » /2y, (68a)
1™ )see text otherwise ' (68b)

1f the conditions on equation (68) are not met, then 1| — n) = 1/2y?,and again Im « becomes large.
For a physical understanding of refractive and other effects, it is useful to have an expression for the phase velocity (in units of the
speed of light) which [rom eqation (46) is K

B = 1/n[L = (1 — nilgui/e?] . (69)

Inspection of equation (69) shows that n greater than (less than} unity implies that f,is less than (greater than) unity.
Therefore, in the above asymptotic regimes we have the following:

Fast mode: 1+ 20/ — a2 22s 1yt and o (70a)
Bow =11+ ot g —ni2  a?» 12y and ni/2. (70b)
14 2ytand /292> n%2  and o'’ (70)c)

Alfvén mode:
. 1 —é n+ —2-5—;’?—& nt el > 2;'2 and  a'? ;»'—2-';: . {71)
see text otherwise (73

Thus, on the fast branch when r,, is large (eq. [70a]) or when ng is small and the waves are plasma-like (eq. [70b]), increasing n,
increases displacement carrent relative to plasma current, thus driving the phase velocity closer to that of a light wave in frec space
(i.e., ¢). However, when n, is near zero and the wave is already supported by displacement current (eq. [70]), increasing n, increases
the electric field paraliel to b, which increases the plasma current, making the phase velocity more superluminous. in Figure 4 we
plotfi;, —lasa function of nuﬁ/m2 for a cold distribution with yg = 100 for several valuesof n,. .

On the Alfvén branch, thé same arguments apply, although essentially in reverse. When iy is small and the wave is purely
clectromagnetic {see eq. [71]), increasing i, increases plasma current, which decreases the phase velocity. Again, when the condi-
tions on equation (70a) are not met, the parallel phase velocity is comparable to the particle velocity, so that Landau damping or 1
growth occurs, and the implicit assumption that the wave frequency be much greater than the damping or growth rate is violated. In
this regime the real and imaginary parts of w depend sensitively on the exact form of the distribution function,

V. DAMPING OF ALFVEN WAVES IN AN QUTFLOWING PLASMA

In the previous section, we found solutions for the index of refraction with damping completely neglected. In the B=
approximation, linear damping of the X-mode due to wave particle resonance is absent because no particles exist with speed equal
to c. Likewise, there is no damping of waves on the superluminous branch of the O-mode. For all waves in radio pulsar plasmas,
collisional damping is negligible. However, the Alfvén wave branch of the O-mode can interact resonantly with the particles. In an
electron-positron plasma with identical distribution functions for each species, this can lead to damping at rates which constrain the
presence of such waves in the magnetosphere. In this section, we consider this effect, using a very simplificd model of the pair
distribution functions.

We assume the pair distribution functions are given by

untexp [—(uy — woluyl Uy 2o > 1

Jxln) = {0 Hy < (73)

This represents a relativistically outflowing plasma with the expected broad momentum dispersion and the relativistic low-energy
cutoff set by the finite opacity for pair creation above the poles. We expect, and will show, that the Alfvén waves which propagate
outward along the open field lines are weakly damped if and only if their phase momentum u; = B4,y cxceeds the exponential cutoff
momentum u,,, Then from equation (68a) evaluated for this distribution, ;
LA |
n |~ 1 + 811,." (Ui (74)
gives the index of refraction, neglecting damping,. This dispersion relation is correct if 4u,, mf, » ” and w,’“,/uﬂ w* » n3/2. Notice that
if (2, becomes very large, equation (74) predicts the wave propagates with speed approaching the speed of light along the field lines,
since at very high density, the component of 8E along B is almost completely shorted out.
One might expect that at high density, the finite cross field drifts might make a more important contribution to the dispersion, as
in ordinary hydromagnetic waves. However, if one assumes very large plasma frequency in equation (44), along with propagation
along Bwithn — 1 <€ uy 2 and with the distribution function given by equation (73), then ‘

g = Dy _ mNme* wy (75)' .
(ny ~ Dp=w do’wiul BUg o’ :
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FiG. 4—Departure of the phase velocity (in units of ¢) from unity for the fast mode of u cold lowing e* plasma (y, = 100). Ten different values of i, are labeled.
The nsymptotic forms represented in eqgs. (70a)-{70c) are found in the parallel curves in the lower left, the solid curve forming an upper envelope, and the down
Llurning curves in the extreme lower left, respectively.

where (11y — 1)y is the index of refraction for almost parallel propagation with §E ) neglected, and () — 1)y, is the index of
refraction from equation (74). This ratio is independent of position for relativistic outfiow along B with no acceleration of the
particles, Even for densities as high as 10° times the corotation density, the numerical value of equation (75) is 107 %/u7. Therefore, in
the main body of the pair distribution, the B = oo approximation is excellent.

We now write the basic O-mode dispersion relation (45) in the form

2

Diw, k, ) = o — *i* — (w* — c*kF) gé gin) =0, (76)

with g given by equation (46). When n), is given by equation (73), we find g = 4u,, -+ inf,v3/'. We now assume k = k, + ik,, with
Iy €k, ~ k and write D ~ D,{w, k,, 0) -+ iD{w, k,, 8) + ik{(2D,/dk);, .o = 0. Since k{w) is determined by D, (w, k,, &) = 0, this yields
ki = —Df(@D,/2k). We now evaluate this general result with the dispersion relation {73), to find

_z W, 2w,
= 4 k 3wl exp (_ u,},”mﬂ) an

where we have self-consistently assumedn ~ 1and 8 < 1. .

We now apply this result to a simplified picture of wave propagation. Suppose the radiation is emitted with & along Bin a
low-altitude region of the magnetosphere, where < wy,. An example of such a region might be the plasma zone just above the
“gap™ or “starvation zone™ which forms in a variety of models for pair creation (see Arons 1983b for a summary of these).
Tsytovitch and Kaplan (1972) have outlined at least one emission mechanism for the production of field-alipned Alfvén waves,
which may be applicable to the relativistic plasmas expected in the pair creation models. Above this wave generation zone, the
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relaxation of the bump-on-tail character of the plasma which causes the emission requires the waves to propagate through stable
plasma, before being converted into waves on the superluminous branch of the O-mode. This conversion must occur by nonlinear
mode coupling or by linear gradient coupling, topics outside of our present study. The simplest model for the plasma structure is
relativistic plasma outflow along a dipole magnetic field, with no gradients in the distribution functions across B and with density
declining in proportion to r~3 but no other variation of the distribution functions with r. Then /o decreases with altitude, while
the phase 4-velocity
2uliPe
Hy = ,B(;, '}’,;, = "_;""GTE (78)
L

also decreases, and k;/k increases with radius.
Consider emission at radius r, along a field line whose footprint intersects the crust at magnetic colatitude ©,,. In the accompany-

ing paper, we show that if an Alfvén wave is emitted with k exactly along B, the angle between k and B at each point alonga ray is

3 e\ Y
=5oli) (-3 ”

where O, = (-3,‘,(1",E/R,,.)“’1 is the magnetic colatitude of the emission point, when 1 » ©, > ©,. Our dispersion relation (73) is correct
if ug/u,, > 1. From equations (79) and (78}, this propagation, with the phase momentum on the tail of the pair distribution, occurs for

all radiir < r,, where
. 1/4 14 12 12 14
Tm 1o 200Y ] taRe 1A OINT( L) (80)
R, u, 10'% em~? im e, R,

Alfvén waves emitted anywhere between the surface and ~ 1000 km satisfy this condition, if the emission occurs in the densest parts
of the pair plasma.

Landau absorption is more important in constraining the range of radii where waves can propagate on the low-frequency branch.
The spatial damping rate of the energy density is 2k;. The optical depth for waves emitted at 7, to reach 7 is

r n kr 8 w,r) .
o, r) = ‘[ 2, v )dr = — —5 exp ‘:— ———.,E-—{l . . {81)
e i e 6 1, 3 u}fe®,
assuming r — r, > I, as must be the case if the radiation is to escape from low altitude to infinity. This optical depth is strongly

frequency dependent, while pulsar spectra show no signs of exponential cutoffs in the radio range. Therefore, the optical depth
between the emission zone and the region of mode conversion to the escaping branch of the O-mode must be less than unity. This
restricts the region of Alfvén wave transport to be at radii less than Foye With g = r,/(I0 A and

In A = 3.2 + In (/100 km) — In (/1 m) — In (/1007 + In {r/r)* - (82)

Thus if the radio emission process is at very low altitude on polar field lines and the radiation must propagate to infinity through a
relativistically streaming plasma which is stratified only in the radial direction, the lack of strong Landau absorption in the observed
radio spectra implies the efficient conversion of this radiation into the superluminous 0-mode at radii less than 1000 km, for
canonical parameters of polar flow models for radio pulsars. This conclusion is not changed if one assumes a power-law distribution
for the high-energy tails of the particle distributions. This changes the exponential dependence of the optical depth on w into a
power-law dependence, but the absorption still implies an exponential cutoff of the radiation spectrum above & critical frequency.

V. PROPAGATION CHARACTERISTICS OF THE EXTRAORDINARY MODE

When the current and charge densities have their “normal " values, J /B = P~'and cy/B~ P~ the 0-and X -modes decouple,
and the X-mode dispersion relation is Dy = 0, with Dy given by equation (33). The wave is linearly poiarized, with 0 perpendicular

to the plane of k and B, and 6B in the plane of k and B. For plasma at rest with vacuum polarization neglected, the explicit solution

of the dispersion relation is
2 apa 4P . 4zUNY
W= C’k"(l — —7;-:,& cos” 9)(1 + ;3 ) . (83)

This dispersion relation and the associated polarization identify the X -mode as the magnetosonic wave of magnetohydrodynamics,
with relativistic energy density and displacement current included (1 is added to 4nU/B?). Because the plasma is assumed to have
only parallel momentum dispersion, the X-mode can be firehose unstable, if P exceeds the magnetic tension B*/4n. If the plasma
density approaches zero while the magnetic field remains strong {w,, > w) for all species, the X-mode becomes a light wave, with
phase and group speed approaching ¢ from below. If 4xU/B* » 1, the wave propagates as the conventional magnetosonic mode,
with phase and group velocity much less than e.

The X-mode dispersion relation can be solved in general. Define a = cI1/U and b = P)/U and let 6 = 4nU/B* and p = cos 0.
Then

n={—apd £ [1+(1— bu?)s + (a* — el i VA bu%d), ‘ (84)

where 0 < #/2 and n > 0 corresponds to waves travelling outward from the star. For ¢ > =/2, the outbound wave corresponds to
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n < 0. We are interested in very strongly magnetized plasmas, with § < 1. Then

n= +[1+ X1 & 2au + bu*)d] {85)
through first order in 8. If the plasma is cold with streaming velocity vy = +eflp, then a = fyand b = 2, and
n=+[1+601 F 8,1, (86)

with By = fp 1. When the plasma is cold, the results {(83){86) can be equally well derived by first Lorentz transforming to the rest
frame of the plasma where (w')* = c*(k')*/1 + &), then transforming back to the streaming frame. When the plasma is hot with the
distribution function given by equation (73), the X-mode index of refraction is still given by equation (86), with

Bo=1——|1n (=) _o0577|. (87)
2y, o)

In a magnetized plasma with transverse velocity dispersion and nonzero magnetic moments (M), the X-mode can be damped
(Barnes 1966). The mechanism is the Landau damping of longitudinal components of the wave electric field, which appear because
of (M) - V4B forces on the particles. In an electron-ion plasma, these act to separate electrons from ions, creating an electrostatic
component of the wave electric field polarized along B. Barnes and Scarple (1973) showed that the same effect persists in an
isotropic, relativistic plasma when the electron and ion distribution functions differ. In our model of a pulsar’s plasma, such
damping is absent, primarily because the plasma has no momentum dispersion transverse to B; this appears in the 2-3 and 3-2
components of the mobility tensor, which are exactly zero when &, is zero since the magnetic moments of all the particles are zero.
In addition, if the distribution functions of the ultrarelativistic species are identical, then the Landau damping of the X-mode is zero
even if the magnetic moments are finite. These special symmetries can be broken by various processes which can excite (small) pitch
angle dispersion in the plasma and differentially accelerate the species, but these topics are beyond the scope of our work here.

VL. CONCLUSION
a) Remarks on Propagation Characteristics and Emission Mechanisms

The above constraints are meant to be illustrative examples, since we have omitted a variety of important effects which need to be
included in a complete propagation model. Transverse stratification und relative streaming between the plasma components are of
special importance, since these can lead to rapid refraction of the radiation into the boundary layers and continued growth of the
modes, rather than damping, respectively. Once in the boundary layers, the steep gradients and large current and charge densities
can lead to strong mode coupling and escape of radiation to infinity, rather than the damping implied by equation (81). The optical
depth (eq. [81]) does show that it is not sufficient to simply propose an instability mechanism for the emission of high brightness
temperature radiation; one must also specify the means of escape of this radiation to infinity. Most of the attractive pulsar models
suggest the generation of coherent photons occurs in a plasma and magnetic field configuration with both the crossover frequency
(eq. [56]) and the cyclotron frequency large compared to the wave frequency. Direct emission processes below the cyclotron
frequency (e.g., Asseo, Pellat, and Sol 1983} couple only to subluminous radiation. Qur results for Landau absorption show that if
the radio emission occurs because of a mechanism of this sort, escape of this radiation to infinity requires mode conversion into
superluminous waves which must occur at relatively low altitude, in order to avoid noticeable absorption effects in the spectra,

Models have been proposed in which low-altitude emission occurs along polar field lines in a relativistically outflowing electron-
positron plasma with much lower density, such that the plasma frequency (more precisely, the crossover frequency) falls within the
observed spectral domiain (Ruderman and Sutherland 1975; Benford and Buschauer 1977; Cheng and Ruderman 1980; Stinebring
et al. 1984a, b). In these, radio emission occurs because of a two-step process. The plasma is presumed o be electrostatically
two-stream unstable, because of relative motion between the components. From our results in § ITI, this requires the special
assumption k,/k < (w}/y*w?)"*; il this inequality is violated, the instability is intrinsically electromagnetic, and the emission
process is direct. The broad momentum dispersion in the pair plasma prevents growth of the electrostatic modes due to the relative
streaming between the electrons and positrons proposed by Cheng and Ruderman (1977), while electrostatic instability driven by
the high-energy beam accelerated in the surface starvation zone is too weak, if the beam is composed of TeV electrons or positrons
(Benford and Buschauer 1977). If the surface can emit baryonic ions, the much lower longitudinal mass allows possible excitation of
clectrostatic modes (Buschauer and Benford 1977), subject to the very restrictive constraint on k, /k.

Electrostatic beam plasma modes cannot escape from the magnetosphere, however. In all of these models, the authors hypothe-
size that the electrostatic instability operates solely to create charge density bunching in the plasma, These bunches radiate
electromagnetic waves by the vacuum curvature process, enhanced by the collective organization of many charges within one
vacuum wavelength. In essence, the collective emission process is the coupling of electrostatic plasma waves to vacuum curvature
modes.

Because the emission must occur in a plasma, with the collective enhancement of the emission occuring at the proper plasma
frequency, the Razin effect reduces the vacuum curvature emissivity of an electrostatically penerated bunch. The results of Asseo,
Pellat, and Sol (1983) show this to be the case for curvature emission into the O-mode; only bunching amplitudes in excess of unity
lead to sufficient emissivity in bunched coherent curvature emission, if the mechanism were to generate only O-mode photons. Here,
we give some preliminary considerations of possible Razin suppression of the X-mode emission.

If the emission process is to proceed as if in vacuum, the time retardation factor I — nfi; cos & must be well approximated by
setting the index of refraction n equal to unity, where # is the angle between the k vector of the radiation and f, = f, 8/B, and cff, is
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the velocity of a group of emitting particles along B. From our approximate dispersion relation {86),

1 2 2 8 2032
l—wllﬁncosﬂ=2—“1]-(l+y09)—g-j-);(l-ky8) . (.88)
The standard theory assumes 6 = 0. Suppose, first, that the emission is narrow band near the proper plasma frequency and oceurs
with maximum efficiency at each position, so that the vacuum critical frequency for curvature emission a_;, = 3cy3/p is near the
crossover frequency (eq. [56]). Here p is the radius of curvature of B. Then yo = (1 — f5) ' = (w/3c)!/*. Vacuum curvature
emission maximizes for @ & 1/y,. After putting in the sum over species explicitly into equation (86), we find

| lefry
1“'1ﬁﬂ°°59~ﬁ[1‘§ﬁ(&)]’ (89)

where € is the ratio of the energy density in accelerated particles (which have 7u,,, > y¢) to the magnetic energy density at the surface, a
ratio equal to the [raction of the polar cap potential expended in creating the pair plasma. As a typical example in which e is as small
as possible, we use the space charge-limited beam model (Arons 19835, eq. [841). Then for the flow regions far from the slot gap,

1 12
e o.s4(£—ga-'ﬁ)1ﬂfz ) : (90)

B surfoce

while y, = 50-100 is typical for the emission of curvature photons at meter wavelengths, Vacuum curvatore emission requires
F/R, <€ 50(Boustace/101% gauss)! P~ 13(100/70)*".

For plasmas with energy as low as is implied by equation (50}, therefore, Razin suppression is not a factor in bunched coherent
curvature emission models, for radiation traveling almost parallel to the plasma. This conclusion assumes that the bunches
correspond to small-amplitude disturbances in an otherwise weakly inhomogeneous plasma; if, instead, some unidentified mecha-
nism can turn the plasma into small clouds propagating through a much more rarefied medium, our model of the plasma is
inapplicable. While such a cloud model is unlikely (Ginzburg and Zheleznayakov 1975), it is not forbidden by any fundamental
principle in a plasma where relative streaming between components can derive the formation of charge density fluctuations. More
importantly, our estimates indicate the importance of taking the plasma into account self-consistently in analyzing the emission
physics of any plasma model. Other possibilities for pulsar emission exist, of course, many of which do tike the plasma into proper
account from the beginning; see Michel (1982) and Lominadze and Pataraya {1982) for at least a mention of these.

b) Summary

We have derived the complete dispersion relation for electromagnetic waves in ultrarelativistic, one-dimensional plasma in a very
strong magnetic field including aliowance for nonzero charge and field aligned current density (§ 1I). We extracted useful results for
the dispersion relations when the two polarization states are approximately decoupled, as they should be in normal electron-
positron plasmas in radio pulsars (§§ 11T, IV). We derived the Landau absorption rate for subluminous waves with Alfvén polariz-
ation in § V and used it to constrain the emission of such waves to radii small compared to the light cylinder, in the context of
outflow of relativistic e* plasma along the poiar field lines. We used our results to show how propagation effects can affect the
emission physics, in the case of bunched coherent curvature radiation emitted by small-amplitude bunches propagating in a weakly
inhomogeneous plasma (§ Via). Our resuits are applied to the refraction of radio waves in the polar flow zones of pulsars in an
accompanying paper; further applications of the basic dispersion relation {eg. [38]) will be discussed elsewhere.

Our research on this topic was supported by NSF grants AST 79-23243, AST 87-15456, and AST 83-17462, by grant number 85-6
from the Institute of Geophysics and Planetary Physics, and by the taxpayers of California,
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